All resources in Science

Inside the DNA

(View Complete Item Description)

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Material Type: Activity/Lab

Authors: Mircea Ionescu, Myla Van Duyn

Using DNA to Identify People

(View Complete Item Description)

it would be ideal if students already have learned that DNA is the genetic material, and that DNA is made up of As, Ts, Gs, and Cs. It also would help if students already know that each human has two versions of every piece of DNA in their genome, one from mom and one from dad. The lesson will take about one class period, with roughly 30 minutes of footage and 30 minutes of activities.

Material Type: Lecture

Author: Megan E. Rokop

Skeletal System

(View Complete Item Description)

Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question: When you get home from school, your mother grabs you, and you race to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and she is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result show her BMD is -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her daughter and granddaughter be worried about this condition, and if so, what are measures they could take to prevent this from happening to them?

Material Type: Unit of Study

Author: Morgan R. Evans

Introduction to Genetic Engineering and Its Applications

(View Complete Item Description)

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Material Type: Lesson Plan

Authors: Kimberly Anderson, Matthew Zelisko

Forensics

(View Complete Item Description)

A site that has interesting information on forensics and interactive activities for kids to play. The student will learn investigative techniques that will enable them to better understand the science of forensics. The use will explore new technology related to anthropology and forensics.

Material Type: Lesson Plan

DNA Forensics and Color Pigments

(View Complete Item Description)

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis. They place small drops of different food coloring ("water-based paint") on strips of filter paper and then place one paper strip end in water. As water travels along the paper strips, students observe the pigments that compose the paint decompose into their color components. This is an example of the chromatography concept applied to DNA forensics, with the pigments in the paint that define the color being analogous to DNA fragments of different lengths.

Material Type: Activity/Lab

Authors: Mircea Ionescu, Myla Van Duyn

The Case of the Stolen Painting: A Forensic Mystery

(View Complete Item Description)

This video will help students, particularly those not in AP-level classes, have a practical application for knowing about the major divisions between plants, particularly about the details of plant anatomy and reproduction. Students will be able to :Identify the major evolutionary innovations that separate plant divisions, and classify plants as belonging to one of those divisions based on phenotypic differences in plants. Classify plants by their pollen dispersal methods using pollen dispersal mapping, and justify the location of a _„ƒcrime scene_„Ž using map analysis. Analyze and present their analysis of banding patterns from DNA fingerprinting done using plants in a forensic context.

Material Type: Lecture

Authors: MIT BLOSSOMS, Sydney Bergman

Who Robbed the Bank?

(View Complete Item Description)

Students use DNA profiling to determine who robbed a bank. After they learn how the FBI's Combined DNA Index System (CODIS) is used to match crime scene DNA with tissue sample DNA, students use CODIS principles and sample DNA fragments to determine which of three suspects matches evidence obtain at a crime location. They communicate their results as if they were biomedical engineers reporting to a police crime scene investigation.

Material Type: Activity/Lab

Authors: Denise W. Carlson, Frank Burkholder, Malinda Schaefer Zarske

The Lunch-Bot

(View Complete Item Description)

Students are challenged to design and program Arduino-controlled robots that behave like simple versions of the automated guided vehicles engineers design for real-world applications. Using Arduino microcontroller boards, infrared (IR) sensors, servomotors, attachable wheels and plastic containers (for the robot frame), they make "Lunch-Bots." Teams program the robots to meet the project constraints—to follow a line of reflective tape, make turns and stop at a designated spot to deliver a package, such as a sandwich or pizza slice. They read and interpret analog voltages from IR sensors, compare how infrared reflects differently off different materials, and write Arduino programs that use IR sensor inputs to control the servomotors. Through the process, students experience the entire engineering design process. Pre/post-quizzes and coding help documents are provided.

Material Type: Activity/Lab

Author: Mark Supal

7.4 Matter Cycling & Photosynthesis

(View Complete Item Description)

Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.

Material Type: Lesson, Lesson Plan, Module, Teaching/Learning Strategy, Unit of Study

Author: OpenSciEd

Exploring Energy: Kinetic and Potential

(View Complete Item Description)

Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.

Material Type: Lesson Plan

Authors: Eric Anderson, Irene Zhao, Jeff Kessler