This 9-minute video lesson gives an example of using initial conditions to …
This 9-minute video lesson gives an example of using initial conditions to solve a repeated-roots differential equation .[Differential Equations playlist: Lesson 21 of 45]
This 12-minute video lesson looks at what happens when the characteristic equation …
This 12-minute video lesson looks at what happens when the characteristic equation only has one repeated root. [Differential Equations playlist: Lesson 20 of 45]
This 14-minute video lesson explains how the product of the transforms of …
This 14-minute video lesson explains how the product of the transforms of two functions relates to their convolution. [Differential Equations playlist: Lesson 44 of 45]
This 10-minute video lesson looks at using the method of undetermined coefficients …
This 10-minute video lesson looks at using the method of undetermined coefficients to solve nonhomogeneous linear differential equations. [Differential Equations playlist: Lesson 22 of 45]
This 6-minute video lesson concludes the series on undetermined coefficients by putting …
This 6-minute video lesson concludes the series on undetermined coefficients by putting it all together. [Differential Equations playlist: Lesson 25 of 45]
This 12-minute video lesson shows how to use the convolution Theorem to …
This 12-minute video lesson shows how to use the convolution Theorem to solve an initial value problem. [Differential Equations playlist: Lesson 45 of 45]
This 19-minute video lesson shows how to solve a non-homogeneous differential equation …
This 19-minute video lesson shows how to solve a non-homogeneous differential equation using the Laplace Transform. [Differential Equations playlist: Lesson 35 of 45]
In this video module, students learn how scientists use genetic information from …
In this video module, students learn how scientists use genetic information from dogs to find out which gene (out of all 20,000 dog genes) is associated with any specific trait or disease of interest. This method involves comparing hundreds of dogs with the trait to hundreds of dogs not displaying the trait, and examining which position on the dog DNA is correlated with the trait (i.e. has one DNA sequence in dogs with the trait but another DNA sequence in dogs not displaying the trait). Students will also learn something about the history of dog breeds and how this history helps us find genes.
Scientists who are working to discover new medicines often use robots to …
Scientists who are working to discover new medicines often use robots to prepare samples of cells, allowing them to test chemicals to identify those that might be used to treat diseases. Students will meet a scientist who works to identify new medicines. She created free software that ''looks'' at images of cells and determines which images show cells that have responded to the potential medicines. Students will learn about how this technology is currently enabling research to identify new antibiotics to treat tuberculosis. Students will complete hands-on activities that demonstrate how new medicines can be discovered using robots and computer software, starring the student as ''the computer.'' In the process, the students learn about experimental design, including positive and negative controls.
This video segment adapted from A Science Odyssey tells the story of …
This video segment adapted from A Science Odyssey tells the story of researcher Sir Alexander Fleming, whose luck and scientific reasoning led to the groundbreaking discovery of penicillin.
This short video and interactive assessment activity is designed to teach fifth …
This short video and interactive assessment activity is designed to teach fifth graders about distances between points on multiple routes (metric units).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.