This unit launches with a slow-motion video of a speaker as it …
This unit launches with a slow-motion video of a speaker as it plays music. In the previous unit, students developed a model of sound. This unit allows students to investigate the cause of a speaker’s vibration in addition to the effect.
Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system. Along the way, students manipulate the components (e.g. changing the strength of the magnet, number of coils, direction of current) to see how this technology can be modified and applied to a variety of contexts, like MagLev trains, junkyard magnets, and electric motors.
This animated essay from the American Experience Web site explains the difference …
This animated essay from the American Experience Web site explains the difference between alternating and direct electric current and offers in-depth explanations about the role played by a battery, light bulb, wire, and generator. Grades 6-12.
In this video David rapidly explains all the concepts in 1D motion …
In this video David rapidly explains all the concepts in 1D motion and also quickly solves a sample problem for each concept. Keep an eye on the side scroll see how far along you've made it in the review video. Created by David SantoPietro.
In this video David quickly explains each 2D motion concept and does …
In this video David quickly explains each 2D motion concept and does a quick example problem for each concept. Keep an eye on the scroll to the right to see where you are in the review. Created by David SantoPietro.
In this video David explains the concepts in Work and Energy and …
In this video David explains the concepts in Work and Energy and does an example problem for each concept. Link for document: https://www.dropbox.com/s/t1w6xlnkozzel17/Energy%20review.pdf?dl=0. Created by David SantoPietro.
In this video David quickly explains each concept behind Forces and Newton's …
In this video David quickly explains each concept behind Forces and Newton's Laws and does a sample problem for each concept. Keep an eye on the scroll to the right to see how far along you've made it in the review. Created by David SantoPietro.
In this video David quickly explains each concept for waves and simple …
In this video David quickly explains each concept for waves and simple harmonic motion and does an example question for each one. Created by David SantoPietro.
At this point in the unit, students have learned about Pascal's law, …
At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.
This video segment adapted from First Light explains why the highest peak …
This video segment adapted from First Light explains why the highest peak in the Pacific, Mauna Kea, is an ideal site for astronomical observations. Featured are new telescope technologies that allow astronomers to explore the universe in more depth.
Using shell model diagram to relate absorption to emission. Derives relationship between …
Using shell model diagram to relate absorption to emission. Derives relationship between emitted photon and energy levels, the Balmer-Rydberg equation. Created by Jay.
Acceleration (a) is the change in velocity (Δv) over the change in …
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction. Created by Sal Khan.
Students work as physicists to understand centripetal acceleration concepts. They also learn …
Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.
This segment from Swift: Eyes through Time traces the history military officers …
This segment from Swift: Eyes through Time traces the history military officers and engineers discovering a strange phenomenon in the sky that astronomers now know are gamma-ray bursts.
In this video segment adapted from ZOOM, two cast members demonstrate what …
In this video segment adapted from ZOOM, two cast members demonstrate what happens when vinegar is added to baking soda inside a container. The resulting chemical reaction produces enough carbon dioxide to launch their paper rocket skyward. Recommended for: Grades K-5
A car propelled by the reaction between lemon juice and baking soda …
A car propelled by the reaction between lemon juice and baking soda has more in common with rockets and jet aircraft than one might think. In this video segment adapted from ZOOM, two cast members demonstrate the power of rocket-propelled vehicles and how to exploit the force produced by the carbon dioxide gas. Grades 3-8.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.