The "Cultivating Our Culture, Conserving Our Land" challenge is an initiative tailored …
The "Cultivating Our Culture, Conserving Our Land" challenge is an initiative tailored for classrooms throughout the Virgin Islands, encouraging them to engage in environmental stewardship activities interwoven with the cultural heritage and history of the territory. This challenge aims to inspire classrooms to develop and execute projects addressing local environmental issues while highlighting the cultural and historical significance of the Virgin Islands. It also fosters a deeper understanding among students of their role as stewards of both their natural and cultural heritage. By encouraging collaboration, creativity, and critical thinking in solving environmental challenges with a cultural perspective, the challenge provides a unique platform for holistic learning and community engagement.Challenge submissions due on April 19th, 2024Submittal form here
This description of this activity is a 2-day lesson: Day 1, Field …
This description of this activity is a 2-day lesson: Day 1, Field Lab, Day 2, and Classroom Investigation. In this field lab, children working in groups will collect 3 samples of soil from different locations. Each sample will be placed in a different Ziploc bag, the groups will label the bags and record in their notebooks the location of each sample, including 5 observations about the area near the location the sample was taken from. They will need to make a plan on how to record and label the bags and locations so when we return to the classroom they will have a system for knowing the location. Individually, each student will also include in his/her notebook a question about each area or the soil collected. Groups will discuss own observation/questions. Each group will share 2 observations they made and 1 question they are wondering. The groups will bring their soil samples back to the classroom. Once back in the classroom, the students will work to create a data recording system and develop an investigable question about the soil. The students will also have available other sample soils provided by the teacher. Students will use the materials and observe the soils and record their findings. The groups would share their data and create a class chart of the information. Ask: What can we notice from this information? What questions do you have about the information?
After listening to Russell Hoban's story "Bread and Jam for Frances", students …
After listening to Russell Hoban's story "Bread and Jam for Frances", students will illustrate their favorite food and add it to the Food Pyramid Graph.
This tool is used for teachers to understand what the students are …
This tool is used for teachers to understand what the students are getting out of their learning by recording three things they learned, two questions and one main idea.
In this lesson, students expand their understanding of solid waste management to …
In this lesson, students expand their understanding of solid waste management to include the idea of 3RC (reduce, reuse, recycle and compost). They will look at the effects of packaging decisions (reducing) and learn about engineering advancements in packaging materials and solid waste management. Also, they will observe biodegradation in a model landfill (composting).
To pique students’ curiosity and anchor the learning for the unit in …
To pique students’ curiosity and anchor the learning for the unit in the visible and concrete, students start with an experience of observing and analyzing a bath bomb as it fizzes and eventually disappears in the water. Their observations and questions about what is going on drive learning that digs into a series of related phenomena as students iterate and improve their models depicting what happens during chemical reactions. By the end of the unit, students have a firm grasp on how to model simple molecules, know what to look for to determine if chemical reactions have occurred, and apply their knowledge to chemical reactions to show how mass is conserved when atoms are rearranged.
This unit on metabolic reactions in the human body starts out with …
This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why.
Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected.
Students figure out that they can trace all food back to plants, …
Students figure out that they can trace all food back to plants, including processed and synthetic food. They obtain and communicate information to explain how matter gets from living things that have died back into the system through processes done by decomposers. Students finally explain that the pieces of their food are constantly recycled between living and nonliving parts of a system.
This unit on matter cycling and photosynthesis begins with students reflecting on …
This unit on matter cycling and photosynthesis begins with students reflecting on what they ate for breakfast. Students are prompted to consider where their food comes from and consider which breakfast items might be from plants. Then students taste a common breakfast food, maple syrup, and see that according to the label, it is 100% from a tree.
Based on the preceding unit, students argue that they know what happens to the sugar in syrup when they consume it. It is absorbed into the circulatory system and transported to cells in their body to be used for fuel. Students explore what else is in food and discover that food from plants, like bananas, peanut butter, beans, avocado, and almonds, not only have sugars but proteins and fats as well. This discovery leads them to wonder how plants are getting these food molecules and where a plant’s food comes from.
The goal of this lesson is to introduce students who are interested …
The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students’ interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.
For students interested in studying biomechanical engineering, especially in the field of …
For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.
Students compare and contrast passive and active transport by playing a game …
Students compare and contrast passive and active transport by playing a game to model this phenomenon. Movement through cell membranes is also modeled, as well as the structure and movement typical of the fluid mosaic model of the cell membrane. Concentration gradient, sizes, shapes and polarity of molecules determine the method of movement through cell membranes. This activity is associated with the Test your Mettle phase of the legacy cycle.
This activity is a brief introduction to adaptations as the group observes …
This activity is a brief introduction to adaptations as the group observes a live organism together. Adaptations are inheritable structures and behaviors that help a group of organisms survive in their habitat. Students start out observing an organisms’ structures, trying to figure which might help it survive in its habitat and which are inheritable. Then, they do the same with behaviors: attempting to figure out which ones are behavioral adaptations. To build understanding of a complex concept like adaptations, students need multiple exposures to it, which is why this activity should be followed by other adaptations-focused activities.
This activity first asks the students to study the patterns of bird …
This activity first asks the students to study the patterns of bird flight and understand that four main forces affect the flight abilities of a bird. They will study the shape, feather structure, and resulting differences in the pattern of flight. They will then look at several articles that feature newly designed planes and the birds that they are modeled after. The final component of this activity is to watch the Nature documentary, "Raptor Force" which chronicles the flight patterns of birds, how researchers study these animals, and what interests our military and aeronautical engineers about these natural adaptations. This activity serves as an extension to the biomimetics lesson. Although students will not be using this information in the design process for their desert resort, it provides interesting information pertaining to the current use of biomimetics in the field of aviation. Students may extend their design process by using this information to create a means of transportation to and from the resort if they chose to.
Finches on the Galapagos Islands have evolved to exploit almost every possible …
Finches on the Galapagos Islands have evolved to exploit almost every possible niche. This diagram shows the range of food sources available on the island and the different beak shapes adapted to exploit each of them.
Hear about how respect for Earth can help us attain a more …
Hear about how respect for Earth can help us attain a more sustainable lifestyle in the face of climate change in this video segment adapted from United Tribes Technical College.
Reviews selected issues including learning, cognition, perception, foraging and feeding, migration and …
Reviews selected issues including learning, cognition, perception, foraging and feeding, migration and navigation, defense, and social activities including conflict, collaboration, courtship and reproduction, and communication. The interacting contributions of environment and heredity are examined and the approaches of psychology, ethology, and ecology to this area of study are treated. The relation of human behavior patterns to those of nonhuman animals is explored. Additional readings and a paper are required for graduate credit.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.