This student-centered Exploration Routine can be used in many different ecosystems and …
This student-centered Exploration Routine can be used in many different ecosystems and provides a way for students to search for, observe, research, and share discoveries about organisms. It can be used with any type of organism or phenomenon you choose for students to focus on, such as macro-invertebrates in streams or ponds, under-log organisms, insects caught with nets, or plants.
Earth ƒ??was formed approximately 4.6 billion years ago, likely as the result …
Earth ƒ??was formed approximately 4.6 billion years ago, likely as the result of a supernova (star explosion). The debris from this explosion began to collapse in on itself due to gravity, forming the sun. Gravity continued to draw the remaining particles together, clumping them into larger bodies, ultimately forming Earth and the other planets in our solar system. Created by Sal Khan.
Communities are dynamic and change over time, and we can observe this …
Communities are dynamic and change over time, and we can observe this process with particular clarity after a disturbance or on new land. Learn about primary and secondary succession, as well as pioneer species. Created by Sal Khan.
Ecology is the study of how living things interact with each other …
Ecology is the study of how living things interact with each other and their environment. This includes living things (biotic factors) and non-living things (abiotic factors).
Students make edible models of algal cells as a way to tangibly …
Students make edible models of algal cells as a way to tangibly understand the parts of algae that are used to make biofuels. The molecular gastronomy techniques used in this activity blend chemistry, biology and food for a memorable student experience. The models use sodium alginate, which forms a gel matrix when in contact with calcium or moderate acid, to represent the complex-carbohydrate-composed cell walls of algae. Cell walls protect the algal cell contents and can be used to make biofuels, although they are more difficult to use than the starch and oils that accumulate in algal cells. The liquid juice interior of the algal models represents the starch and oils of algae, which are easily converted into biofuels.
This activity demonstrates the effect of changes in the environment on the …
This activity demonstrates the effect of changes in the environment on the growth of plants. The plants are placed in environments such as high salinity, cold, heat, or drought and observe the different reactions (growth) of the plants to these conditions. Students discuss the desirability of breeding new types of plants that are better able to withstand these changes if they occur in the general environment. The objectives of this activity is to: 1. Plant, grow and maintain plants under different environmental treatment conditions. 2. Observe differences in plant growth between these treatments. 3. Compare the growth of treated plants with the growth of control plants
The theory of how mitochondria, chloroplasts and other membrane-bound organelles in eukaryotic …
The theory of how mitochondria, chloroplasts and other membrane-bound organelles in eukaryotic cell likely arose from a symbiosis between aerobic prokaryotes and host anaerobic eukaryotic ancestors. Developed by Lynn Margulis.
This biomimetic engineering challenge introduces students to the fields of nanotechnology and …
This biomimetic engineering challenge introduces students to the fields of nanotechnology and biomimicry. Students explore how to modify surfaces such as wood or cotton fabric at the nanoscale. They create specialized materials with features such as waterproofing and stain resistance. The challenge starts with student teams identifying an intended user and developing scenarios for using their developed material. Students then design and create their specialized material using everyday materials. Each students test each design under specific testing constraints to determine the hydrophobicity of the material. After testing, teams iterate ways to improve their self-cleaning superhydrophobic modification technique for their design. After iterating and testing their designs, students present their final product and results to the class.
This open textbook covers the most salient environmental issues, from a biological …
This open textbook covers the most salient environmental issues, from a biological perspective. The text is designed for an introductory-level college science course. Topics include the fundamentals of ecology, biodiversity, pollution, climate change, food production, and human population growth.
Lecture slides for each chapter are available from https://drive.google.com/drive/folders/119oj6XXHnQMpwu_rCgczDFrZPMbqGN8W
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.