Students use a watt meter to measure energy input into a hot …
Students use a watt meter to measure energy input into a hot plate or hot pot used to heat water. The theoretical amount of energy required to raise the water by the measure temperature change is calculated and compared to the electrical energy input to calculate efficiency.
Students use LEGO® motors and generators to raise washers a measured height. …
Students use LEGO® motors and generators to raise washers a measured height. They compare the work done by the motor-generator systems with the energy inputs to calculate efficiency.
A process for technical problem solving is introduced and applied to a …
A process for technical problem solving is introduced and applied to a fun demonstration. Given the success with the demo, the iterative nature of the process can be illustrated.
Demos and activities in this lesson are intended to illustrate the basic …
Demos and activities in this lesson are intended to illustrate the basic concepts of energy science -- work, force, energy, power etc. and the relationships among them. The "lecture" portion of the lesson includes many demonstrations to keep students engaged, yet has high expectations for the students to perform energy related calculations and convert units as required. A homework assignment and quiz are used to reinforce and assess these basic engineering science concepts.
This Lesson provides two different activities that require students to measure energy …
This Lesson provides two different activities that require students to measure energy outputs and inputs to determine the efficiency of conversions and simple systems. One of the activities includes Lego motors and accomplishing work. The other investigates energy for heating water. They learn about by products of energy conversions and how to improve upon efficiency. The teacher can choose to use either of these or both of these. The calculations in the water heating experiment are more complicated than in the Lego motor activity. Thus, the heating activity is suitable for older students, only the Lego motor activity suitable for younger students.
The students participate in many demonstrations during the first day of this …
The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.
Demonstrations explain the concepts of energy forms (sound, chemical, radiant [light], electrical, …
Demonstrations explain the concepts of energy forms (sound, chemical, radiant [light], electrical, atomic [nuclear], mechanical, thermal [heat]) and states (potential, kinetic).
In an active way, students discover a few critical facts about how …
In an active way, students discover a few critical facts about how we use energy and how much energy we use. Each student has a "clue," some of which are pertinent energy facts and others are silly statements that are clearly unrelated to the topic. Students mingle and ask each other for clues until they have collected all the facts they need. This provides a more interactive way to communicate energy statistics, compared to a lecture and introduction with board work. The goal is to introduce students to some key terms and issues associated with energy as a necessary prerequisite for the remainder of the unit.
Students utilize data tables culled from the US DOE Energy Information Agency …
Students utilize data tables culled from the US DOE Energy Information Agency to create graphs that illustrate what types of energy we use and how we use it. An MS Excel workbook with several spreadsheets of data is provided. Students pick (or the teacher assigns) one of the data tables from which students create plots and interpret the information provided. Student groups share with the class their interpretations and new perspectives on energy resources and use.
Several activities are included to teach and research the differences between renewable …
Several activities are included to teach and research the differences between renewable and non-renewable resources and various energy resources. The students work with a quantitative, but simple model of energy resources to show how rapidly a finite, non-renewable energy sources can be depleted, whereas renewable resources continue to be available. The students then complete a homework assignment or a longer, in-depth research project to learn about how various technologies that capture energy resources for human uses and their pros and cons. Fact sheets are included to help students get started on their investigation of their assigned energy source.
Fact sheets are provided for several different energy resources as a starting …
Fact sheets are provided for several different energy resources as a starting point for students to conduct literature research on the way these systems work and their various pros and cons. Students complete a worksheet for homework or take in-class time for research and presentation of their findings to the class. This approach requires students to learn for themselves and teach each other, rather than having the teacher lecture about the subject matter.
Posters are provided for several different energy conversion systems. Students are provided …
Posters are provided for several different energy conversion systems. Students are provided with cards that give the name and a description of each of the components in an energy system. They match these with the figures on the diagram. Since the groups look at different systems, they also describe their results to the class to share their knowledge.
Students discover that they already know a lot about energy through their …
Students discover that they already know a lot about energy through their own life experiences. As active consumers of various forms of energy, they are aware of energy purchases for electricity, home heating/cooling and transportation. Through the pedagogical technique of a "carousel," all students become involved in brainstorming and contributing ideas. The goal is to introduce students to key terms and issues associated with energy, as a prerequisite for the rest of the unit.
Students review the electrical appliances used at home and estimate the energy …
Students review the electrical appliances used at home and estimate the energy used for each. The results can help to show the energy hogs that could benefit from conservation or improved efficiency.
Students complete three different activities to evaluate the energy consumption in a …
Students complete three different activities to evaluate the energy consumption in a household and explore potential ways to reduce that consumption. The focus is on conservation and energy efficient electrical devices and appliances. The lesson reinforces the relationship between power and energy and associated measurements and calculations required to evaluate energy consumption. The lesson provides the students with more concrete information for completing their culminating unit assignment.
Students do work by lifting a known mass over a period of …
Students do work by lifting a known mass over a period of time. The mass and measured distance and time is used to calculate force, work, energy and power in metric units. The students' power is then compared to horse power and the power required to light 60-watt light bulbs.
Students measure the light output and temperature (as a measure of heat …
Students measure the light output and temperature (as a measure of heat output) for three types of light bulbs to identify why some light bulbs are more efficient (more light with less energy) than others.
Students are introduced to a systematic procedure for solving problems through a …
Students are introduced to a systematic procedure for solving problems through a demonstration and then the application of the method to an everyday activity. The unit project is introduced to provide relevance to subsequent lessons.
A quantitative illustration of how non-renewable resources are depleted while renewable resources …
A quantitative illustration of how non-renewable resources are depleted while renewable resources continue to provide energy. Students remove beads (units of energy) from a bag (representing a country). A certain number of beads are removed from the bag each "year." At some point, no non-renewable beads remain. Student groups have different ratios of renewable and non-renewable energy beads. A comparison of the remaining beads and time when they ran out of energy shows the value of utilizing a greater proportion of renewable resources as a sustainable energy resources.
The culminating energy project is introduced and the technical problem solving process …
The culminating energy project is introduced and the technical problem solving process is applied to get students started on the project. By the end of the class, students should have a good perspective on what they have already learned and what they still need to learn to complete the project.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.