Students review what they know about the 20 major bones in the …
Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.
Why do humans have two ears? How do the properties of sound …
Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.
In this lesson the students will learn how the heart functions. Students …
In this lesson the students will learn how the heart functions. Students will be introduced to the concept of action potential generation. The lesson will explain how action potential generation causes the electrical current that causes muscle contraction in the heart. Students will be introduced to the basic electrical signal generated by the heart; P, QRS, and T waves. The lesson will approach the heart from an engineering standpoint and encourage students to design ways to improve heart function. Students will also learn the basic steps of the engineering design process.
In this video we explore the organization of the nervous system, and …
In this video we explore the organization of the nervous system, and its division into the central nervous system and peripheral nervous system. Created by Matthew Barry Jensen.
Extensive reading of works by a few major poets. Emphasizes the evolution …
Extensive reading of works by a few major poets. Emphasizes the evolution of each poet's work and the questions of poetic influence and literary tradition. Instruction and practice in oral and written communication. Topic for Fall: Does Poetry Matter? Topic for Spring: Gender and Lyric Poetry.
Students learn how the endocrine system works and compare it to the …
Students learn how the endocrine system works and compare it to the mail delivery system. Students discuss the importance of communication in human body systems and relate that to engineering and astronauts.
In this activity, students participate in a series of timed relay races …
In this activity, students participate in a series of timed relay races using their skeletal muscles. The compare the movement of skeletal muscle and relate how engineers help astronauts exercise skeletal muscles in space.
The major purpose of this lesson is to promote the learning of …
The major purpose of this lesson is to promote the learning of eye function by associating eye problems and diseases to parts of the eye that are affected. Included in this module are discussions and activities that teach about eye components and their functions. The main activity is dissecting a cow eye, which in many high schools is part of the anatomy curriculum. This lesson extends the curriculum by discussing eye diseases that students might be familiar with. An added fun part of the lesson is discussion of what various animals see.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.