Students compare and contrast passive and active transport by playing a game …
Students compare and contrast passive and active transport by playing a game to model this phenomenon. Movement through cell membranes is also modeled, as well as the structure and movement typical of the fluid mosaic model of the cell membrane. Concentration gradient, sizes, shapes and polarity of molecules determine the method of movement through cell membranes. This activity is associated with the Test your Mettle phase of the legacy cycle.
The final activity of this unit, which integrates the Keepers of the …
The final activity of this unit, which integrates the Keepers of the Gate unit through the Go Public challenge, involves students taking part in experimental design. They design a lab that answers the challenge question: "You are spending the night with your grandmother when your throat starts to feel sore. Your grandma tells you to gargle with salt water and it will feel much better. Thinking this is an old wive's tale, you scoff, but when you try it later that night it works! Why?" Students must have their plan approved by the instructor before they begin. A formal lab write-up is due as part of the laboratory investigation.
Through two lessons and five activities, students explore the structure and function …
Through two lessons and five activities, students explore the structure and function of cell membranes. Specific transport functions, including active and passive transport, are presented. In the legacy cycle tradition, students are motivated with a Grand Challenge question. As they study the ingress and egress of particles through membranes, students learn about quantum dots and biotechnology through the concept of intracellular engineering.
Students are presented with a real-life problem as a challenge to investigate, …
Students are presented with a real-life problem as a challenge to investigate, research and solve. Specifically, they are asked to investigate why salt water helps a sore throat, and how engineers apply this understanding to solve other problems. Students read a medical journal article and listen to an audio talk by Dr. Z. L. Wang to learn more about quantum dots. After students reflect and respond to the challenge question, they conduct the associated activity to perform journaling and brainstorming.
Students journal their thoughts and responses to the questions associated with the …
Students journal their thoughts and responses to the questions associated with the grand challenge question presented in the associated lesson. For the Generate Ideas" step, they answer the questions: "What are your initial ideas about how this challenge can be answered? What background knowledge is needed? Have you tried this before?" After students have individually written responses to these questions, the class brainstorms together to reach consensus on the main ideas that need to be explored to solve the challenge question.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.