Updating search results...

Search Resources

2937 Results

View
Selected filters:
  • Applied Science
Egg, sperm, and fertilization
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the egg, sperm, and fertilization. Created in collaboration between the Association of American Medical Colleges and Khan Academy.

Subject:
Anatomy/Physiology
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Jeff Otjen
Date Added:
10/24/2014
Elasticity & Young's Modulus for Tissue Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
The Electric and Magnetic Personalities of Mr. Maxwell
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are briefly introduced to Maxwell's equations and their significance to phenomena associated with electricity and magnetism. Basic concepts such as current, electricity and field lines are covered and reinforced. Through multiple topics and activities, students see how electricity and magnetism are interrelated.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Electric current
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Current is the flow of charge. We measure current by counting the amount of charge passing through a boundary in one second. Created by Willy McAllister.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Willy McMaster
Date Added:
05/12/2016
Electricity and Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electrifying the World
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the fundamental concepts of electricity. This is accomplished by addressing questions such as "How is electricity generated," and "How is it used in every-day life?" The lesson also includes illustrative examples of circuit diagrams to help explain how electricity flows.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Lin
Date Added:
09/18/2014
Electrocardiograph Building
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on concepts taught in the associated lesson, students learn about bioelectricity, electrical circuits and biology as they use deductive and analytical thinking skills in connection with an engineering education. Students interact with a rudimentary electrocardiograph circuit (made by the teacher) and examine the simplicity of the device. They get to see their own cardiac signals and test the device themselves. During the second part of the activity, a series of worksheets, students examine different EKG print-outs and look for irregularities, as is done for heart disease detection.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Crawford
Katherine Murray
Leyf Peirce
Mark Remaly
Shayn Peirce
Date Added:
09/18/2014
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnetic Waves: How Do Sunglasses Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the scientific and mathematical concepts around electromagnetic light properties that enable the engineering of sunglasses for eye protection. They compare and contrast tinted and polarized lenses as well as learn about light intensity and how different mediums reduce the intensities of various electromagnetic radiation wavelengths. Through a PowerPoint® presentation, students learn about light polarization, transmission, reflection, intensity, attenuation, and Malus’ law. A demo using two slinky springs helps to illustrate wave disturbances and different-direction polarizations. As a mini-activity, students manipulate slide-mounted polarizing filters to alter light intensity and see how polarization by transmission works. Students use the Malus’ law equation to calculate the transmitted light intensity and learn about Brewster’s angle. Two math problem student handouts are provided. Students also brainstorm ideas on how sunglasses could be designed and improved, which prepares them for the associated hands-on design/build activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Electromagnets
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, the students will complete the grand challenge and design an electromagnet to separate steel from aluminum for the recycler. In order to do this, students compare the induced magnetic field of an electric current with the magnetic field of a permanent magnet and must make the former look like the latter. They discover that looping the current produces the desired effect and find ways to further strengthen the magnetic field.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electrons on the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about current electricity and necessary conditions for the existence of an electric current. Students construct a simple electric circuit and a galvanic cell to help them understand voltage, current and resistance.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Electrophoresis and Gel Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

In this animation produced by WGBH and Digizyme, Inc., see how molecules of DNA are separated using gel electrophoresis, and how this process enables scientists to compare the molecular variations of two or more DNA samples.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Physical Science
Physics
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
Amgen Foundation
WGBH Educational Foundation
Date Added:
08/05/2011
Element, Mixture, Compound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a better understanding of the different types of materials as pure substances and mixtures and learn to distinguish between homogeneous and heterogeneous mixtures by discussing an assortment of example materials they use and encounter in their daily lives.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Parnia Mohammadi
Roberto Dimaliwat
Date Added:
09/18/2014
Elementary School Engineering Design Field Day
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit provides the framework for conducting an “engineering design field day” that combines 6 hands-on engineering activities into a culminating school (or multi-school) competition. The activities are a mix of design and problem-solving projects inspired by real-world engineering challenges: kite making, sail cars, tall towers, strong towers and a ball and tools obstacle course. The assortment of events engage children who have varied interests and cover a range of disciplines such as aerospace, mechanical and civil engineering. An optional math test—for each of grades 1-6—is provided as an alternative activity to incorporate into the field day event. Of course, the 6 activities in this unit also are suitable to conduct as standalone activities that are unaffiliated with a big event.

Subject:
Applied Science
Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
Units
Author:
Alexander Kon
Alisa Lee
Andrew Palermo
Christopher Langel
Destiny Garcia
Duff Harold
Eric Anderson
Jean Vandergheynst
Jeff Kessler
Josh Claypool
Kelley Hestmark
Lauren Jabusch
Nadia Richards
Sara Pace
Tiffany Tu
Travis Smith
Date Added:
02/17/2017
Elements of Steel
Read the Fine Print
Educational Use
Rating
0.0 stars

This resource from the AMERICAN EXPERIENCE Web site, which contains both an interactive activity and illustrated text, looks at the composition of different types of steel and their impact on technology.

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Manufacturing
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/29/2004