In this video segment from NatureScene, explore Cartwheel Bay, a wetland in …
In this video segment from NatureScene, explore Cartwheel Bay, a wetland in South Carolina, and learn about the variety of carnivorous plants native to this unique landform.
In this video adapted from Texas Parks and Wildlife Department, learn about …
In this video adapted from Texas Parks and Wildlife Department, learn about carnivorous plants that act as both producers and consumers in an ecosystem. See sundews and blatterworts capture and digest insects.
After exploring the “Case of the Disappearing Log,” students will probably never …
After exploring the “Case of the Disappearing Log,” students will probably never look at a log the same way again. In this activity, students assume the roles of detectives faced with a nature mystery. First, they explore a decomposing log and look for evidence of how the log is changing. They make possible explanations for what might be causing log to disappear. Students then learn about common “suspects”—organisms that decompose wood—and the signature evidence they each leave behind. Students use a Disappearing Log Key to identify which organisms might have left behind which evidence, and use this information to make explanations about what has happened to the log since it was a tree. Finally, students learn that the log isn’t really disappearing, it’s turning into the invisible gases that are part of the cycling of matter in all ecosystems.
Become a detective to solve the case of the smelly backpack! Act …
Become a detective to solve the case of the smelly backpack! Act out the clues and draw conclusions to solve the mystery.
When Detective Bentley cannot figure out why his backpack is smelly, he retraces the events in his day to find clues. Taking on the role of detectives, the viewers act out the events of Bentley’s day and use textual clues to solve the case.
Learning Objective: Draw conclusions from the facts presented in text and support those assertions with textual evidence.
This video will help students, particularly those not in AP-level classes, have …
This video will help students, particularly those not in AP-level classes, have a practical application for knowing about the major divisions between plants, particularly about the details of plant anatomy and reproduction. Students will be able to :Identify the major evolutionary innovations that separate plant divisions, and classify plants as belonging to one of those divisions based on phenotypic differences in plants. Classify plants by their pollen dispersal methods using pollen dispersal mapping, and justify the location of a _crime scene_ using map analysis. Analyze and present their analysis of banding patterns from DNA fingerprinting done using plants in a forensic context.
Bycatch can be defined as the act of unintentionally catching certain living …
Bycatch can be defined as the act of unintentionally catching certain living creatures using fishing gear. A bycatched species is distinguished from a target species (the animal the gear is intended to catch) because it is not sold or used. Marine mammals (whales, dolphins, porpoises), seabirds, sea turtles and unwanted or undersized fish are some examples of animals caught as by-catch The incidental capture of these animals can significantly reduce their populations. The most well known example of by-catch may be the unintentional mortality of spotted and spinner dolphins in the tuna fishing industry. "Dolphin-Safe" tuna was a result of this interaction (Be prepared to discuss how this came about with students, as it is something close to their daily lives). One important aspect to consider when discussing this issue is that laws protect some of the animals caught as by-catch (Marine Mammal Protection Act and Endangered Species Act). In this lesson, students will first be shown pictures of entangled marine animals and will discuss the definition of by-catch This will lead to discussions on why by-catching exists, how it impacts specific animals as well as humans, whether the students believe it is an important issue, and how by-catch can be reduced.
This interactive resource adapted from the National Park Service presents the key …
This interactive resource adapted from the National Park Service presents the key concepts of cave and karst systems, including how and where they form, different types, and various cave environments.
In this lesson, the students look at the components of cells and …
In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.
Students color-code a schematic of a cell and its cell membrane structures. …
Students color-code a schematic of a cell and its cell membrane structures. Then they complete the "Build-a-Membrane" activity found at http://learn.genetics.utah.edu. This reinforces their understanding of the structure and function of animal cells, and shows them the importance of being able to construct a tangible model of something that is otherwise difficult to see.
Students learn about the different structures that comprise cell membranes, fulfilling part …
Students learn about the different structures that comprise cell membranes, fulfilling part of the Research and Revise stages of the legacy cycle. They view online animations of cell membrane dynamics (links provided). Then they observe three teacher demonstrations that illustrate diffusion and osmosis concepts, as well as the effect of movement through a semi-permeable membrane using Lugol's solution.
Learn about how phospholipids form the cell membrane, and what types of …
Learn about how phospholipids form the cell membrane, and what types of molecules can passively diffuse thorugh the membrane. By William Tsai. . Created by William Tsai.
In this unit, students look at the components of cells and their …
In this unit, students look at the components of cells and their functions and discover the controversy behind stem cell research. The first lesson focuses on the difference between prokaryotic and eukaryotic cells. In the second lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. The third lesson continues students' education on cells in the human body and how (and why) engineers are involved in the research of stem cell behavior.
Yeast can reproduce sexually through a signaling pathway known as the mating …
Yeast can reproduce sexually through a signaling pathway known as the mating factor pathway. In this process, two haploid yeast cells combine to form a diploid cell. Yeast cells secrete a signal molecule called mating factor that attracts them to their mates. Once the mating factor of one yeast binds to the receptor on another yeast, an outgrowth called a "shmoo" forms, which allows the yeast cells to fuse together.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.