Students learn about applied forces as they create pop-up-books the art of …
Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.
Students use simple materials to design an open spectrograph so they can …
Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.
Students learn that buoyancy is responsible for making boats, hot air balloons …
Students learn that buoyancy is responsible for making boats, hot air balloons and weather balloons float. They calculate whether or not a boat or balloon will float, and calculate the volume needed to make a balloon or boat of a certain mass float. Conduct the first day of the associated activity before conducting this lesson.
Students explore material properties in hands-on and visually evident ways via the …
Students explore material properties in hands-on and visually evident ways via the Archimedes' principle. First, they design and conduct an experiment to calculate densities of various materials and present their findings to the class. Using this information, they identify an unknown material based on its density. Then, groups explore buoyant forces. They measure displacement needed for various materials to float on water and construct the equation for buoyancy. Using this equation, they calculate the numerical solution for a boat hull using given design parameters.
In this NASA video, scientists describe how the Extreme Ultraviolet Variability Experiment …
In this NASA video, scientists describe how the Extreme Ultraviolet Variability Experiment will sample and track the Sun's ultraviolet irradiance, providing a detailed time sequence of extreme ultraviolet output -- data that can provide advance warning for potentially disruptive energy bursts.
In this adapted video segment, ZOOM guest Tommy takes us on a …
In this adapted video segment, ZOOM guest Tommy takes us on a tour of the Florida Everglades. He describes what makes a wetland biome unique, including the soil, precipitation, and biodiversity.
In this video segment adapted from NASA, students in Matsuyama City, Japan, …
In this video segment adapted from NASA, students in Matsuyama City, Japan, interview Expedition 8 Commander and NASA Science Officer Mike Foale and Flight Engineer Alexander Kaleri about life and work aboard the International Space Station.
In this video segment adapted from ZOOM, the cast investigates how the …
In this video segment adapted from ZOOM, the cast investigates how the pitch of sound changes when they strike a variety of glasses filled with different amounts and types of liquids.
Can a fresh lemon power a digital clock? In this video segment …
Can a fresh lemon power a digital clock? In this video segment adapted from ZOOM, the cast shows you how this can be done and, in the process, discover how kids can be a part of an electric circuit.
Students apply what they know about light polarization and attenuation (learned in …
Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.
See what it is like to walk on the Moon by viewing …
See what it is like to walk on the Moon by viewing this collection of QuickTime images from NOVA Online. Stunning 360-degree panoramas from each of the six successful Apollo Moon landings are featured.
In this activity, students will explore two given websites to gather information …
In this activity, students will explore two given websites to gather information on Bone Mineral Density and how it is measured. They will also learn about X-rays in general, how they work and their different uses, along with other imaging modalities. They will answer guiding questions as they explore the websites and take a short quiz after to test the knowledge they gained while reading the articles.
Students learn about energy, kinetic energy, potential energy, and energy transfer through …
Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.
Students are introduced to the concept of energy conversion, and how energy …
Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.
Students learn about kinetic and potential energy, including various types of potential …
Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.