This activity is designed to be a follow-up to the Spider Exploration …
This activity is designed to be a follow-up to the Spider Exploration activity, and to be done with students who are excited about and interested in spider webs. It’s meant for instructors who want to help their students learn how to conduct a more formal and structured investigation. Students compare quantity of spider webs in two different plant communities. The basic structure of this investigation is pre-planned, but students discuss and plan how to make it a fair test with the least amount of bias as possible. Students also analyze their data, make explanations from their findings, discuss possible inaccuracies of their results, and reflect on science practices and investigation design.
In this video we explore the organization of the nervous system, and …
In this video we explore the organization of the nervous system, and its division into the central nervous system and peripheral nervous system. Created by Matthew Barry Jensen.
Observing an organism for an extended period of time can be a …
Observing an organism for an extended period of time can be a rewarding learning experience that helps students develop a meaningful relationship with the natural world. Students often engage more deeply in observing an organism if they’re given some sort of task to focus their observations. In this activity, pairs of students find an organism, then observe and record its structures and behaviors. Students apply the lens of adaptations as they come up with explanations for how their organisms’ structures and behaviors might help it survive in its habitat. In a group discussion, students consider the relationship between organisms’ structures and possible functions, which is a useful science thinking tool that can help them to better understand the natural world. This activity helps students develop a definition of adaptation that includes both behavioral and structural adaptations (adaptations are inheritable structures or behaviors that help a population of organisms survive in their habitat), and gives students the experience applying that definition to an organism in the local ecosystem.
Students learn about providing healthcare in a global setting and the importance …
Students learn about providing healthcare in a global setting and the importance of wearing protective equipment when treating patients with infectious diseases like Ebola. They learn about biohazard suits, heat transfer through conduction and convection and the engineering design cycle. Student teams design, create and test (and improve) their own Ebola biohazard suit prototypes that cover one arm and hand, including a ventilation system to cool the inside of the suit.
Surface area is the sum of the areas of all faces (or …
Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape. A cuboid has 6 rectangular faces. To find the surface area of a cuboid, add the areas of all 6 faces. We can also label the length (l), width (w), and height (h) of the prism and use the formula, SA=2lw+2lh+2hw, to find the surface area.
Seeing that the surface area to volume ratio of cells generally decreases …
Seeing that the surface area to volume ratio of cells generally decreases as cells get larger, making the exchange of resources, waster and heat more and more difficult.
Students learn about water quality testing and basic water treatment processes and …
Students learn about water quality testing and basic water treatment processes and technology options. Biological, physical and chemical treatment processes are addressed, as well as physical and biological water quality testing, including testing for bacteria such as E. coli.
Students experience the engineering design process as they design, fabricate, test and …
Students experience the engineering design process as they design, fabricate, test and redesign their own methods for encapsulation of a (hypothetical) new miracle drug. As if they are engineers, teams make large-size prototypes to test proof of concept. They use household materials (tape, paper towels, plastic wrap, weed-barrier fabric, glues, etc.) to attach a coating to a porous "shell" (a perforated plastic Wiffle® ball) containing the medicine (colored drink mix powder). The objective is to delay the drug release by a certain time and have a long release duration—patterned after the timed release requirements of many real-world pharmaceuticals that are released from a polymer shell via diffusion in the body. Guided by a worksheet, teams go through at least three design/test iterations, aiming to achieve a solution close to the target time release constraints.
Students are introduced to an engineering challenge in which they are given …
Students are introduced to an engineering challenge in which they are given a job assignment to separate three types of apples. However, they are unable to see the color differences between the apples, and as a result, they must think as engineers to design devices that can be used to help them distinguish the apples from one another. Solving the challenge depends on an understanding of wave properties and the biology of sight. After being introduced to the challenge, students form ideas and brainstorm about what background knowledge is required to solve the challenge. A class discussion produces student ideas that can be grouped into broad subject categories: waves and wave properties, light and the electromagnetic spectrum, and the structure of the eye.
How is it that all cells in our body have the same …
How is it that all cells in our body have the same genes, yet cells in different tissues express different genes? A basic notion in biology that most high school students fail to conceptualize is the fact that all cells in the animal or human body contain the same DNA, yet different cells in different tissues express, on the one hand, a set of common genes, and on the other, express another set of genes that vary depending on the type of tissue and the stage of development. In this video lesson, the student will be reminded that genes in a cell/tissue are expressed when certain conditions in the nucleus are met. Interestingly, the system utilized by the cell to ensure tissue specific gene expression is rather simple. Among other factors - all discussed fully in the lesson - the cells make use of a tiny scaffold known as the “Nuclear Matrix or Nucleo-Skeleton”. This video lesson spans 20 minutes and provides 5 exercises for students to work out in groups and in consultation with their classroom teacher. The entire duration of the video demonstration and exercises should take about 45-50 minutes, or equivalent to one classroom session. There are no supplies needed for students’ participation in the provided exercises. They will only need their notebooks and pens. However, the teacher may wish to emulate the demonstrations used in the video lesson by the presenter and in this case simple material can be used as those used in the video. These include play dough, pencils, rubber bands (to construct the nuclear matrix model), a tennis ball and 2-3 Meters worth of shoe laces. The students should be aware of basic information about DNA folding in the nucleus, DNA replication, gene transcription, translation and protein synthesis.
Students carry out independent experimental study under the direction of a member …
Students carry out independent experimental study under the direction of a member of the Biology Department faculty. Subject allows students with a strong interest in independent research to fulfill the project laboratory requirement for the Biology Department Program in the context of a research laboratory at MIT. Written and oral presentation of the research results is required. The permission of the faculty supervisor and the Biology Undergraduate Office must be obtained in advance. Instruction and practice in written and oral communication provided.
Animals are sometimes hard to see, but with observation skills we can …
Animals are sometimes hard to see, but with observation skills we can use evidence to figure out where they‘ve been and what they’ve been doing. Students love to look for evidence of animals, and teaching them basic tracking skills can open up a world of intrigue and mystery. In this Focused Exploration activity, students use observation skills to notice evidence of animals living in the area. With a few basic tracking tools, students look for animal signs, and follow animal paths to new discoveries. Students also engage in key science practices as they share explanations for the animal signs they find, compare and evaluate explanations based on the strength of evidence, and take part in scientific argumentation.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.