This video segment adapted from NOVA relates the dramatic story of vulcanologists …
This video segment adapted from NOVA relates the dramatic story of vulcanologists trying to predict the timing of the cataclysmic eruption of Mount Pinatubo in the Philippines.
Mechanical energy is the most easily understood form of energy for students. …
Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.
Learn about position, velocity, and acceleration graphs. Move the little man back …
Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.
This lesson will explore the connections between magnetism in natural materials and …
This lesson will explore the connections between magnetism in natural materials and electromagnetism. The ultimate goal will be for students to form an understanding that the source of magnetism in natural materials is moving charges. It is helpful, but not required, for the students to have some work with electricity, and other distance forces (such as gravity or the electric force). The lesson will probably take two 50-minute periods to complete. Although the video footage is brief, the activities are in depth, inquiry-based, and can take time for the students to explore. The materials are not specifically prescribed, but can include things such as bar magnets, compasses, iron filings, wire, batteries, steel bolts, coils, straws, and hot glue. The activities include drawing the magnetic fields of bar magnets and electromagnets. The activities also include making a magnet from a drinking straw and iron filings.
Join a group of middle-school students on a visit to a laboratory …
Join a group of middle-school students on a visit to a laboratory at the Massachusetts Institute of Technology, where they experiment with "mystery mud" and learn about the relationships between magnetism, particle motion, and changes in the state of matter.
In this video lesson, the concept of momentum applied to hard-body collisions …
In this video lesson, the concept of momentum applied to hard-body collisions is explained using a number of simple demonstrations, all of which can be repeated in the classroom. Understanding Newton's Laws is fundamental to all of physics, and this lesson introduces the vital concepts of momentum and energy, and their conservation. Only some preliminary ideas of algebra are used here, and all the concepts presented can be found in any high-school level physics book. In terms of materials required, getting hold of large steel balls may not be easy, but large ball bearings can be procured easily. On the basis of what students have learned in the video, teachers can easily generate a large number of questions that relate to one's daily experiences, or which pose new challenges: for example, in a collision between a heavy and light vehicle, why do those inside the lighter one suffer less injury?
Student pairs experience the iterative engineering design process as they design, build, …
Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation of energy. Acting as engineering teams, during the activity and competition they are responsible for design and construction planning within project constraints, including making engineering modifications for improvement. They carefully consider material choices to balance potentially competing requirements (such as impact-absorbing and low-cost) in the design of their prototypes. They also experience a real-world transfer of energy as the elevated egg's gravitational potential energy turns into kinetic energy as it falls and further dissipates into other forms upon impact. Pre- and post-activity assessments and a scoring rubric are provided. The activity scales up to district or regional egg drop competition scale. As an alternative to a ladder, detailed instructions are provided for creating a 10-foot-tall egg dropper rig.
Through two lessons and four activities, students learn about nanotechnology, its extreme …
Through two lessons and four activities, students learn about nanotechnology, its extreme smallness, and its vast and growing applications in our world. Embedded within the unit is a broader introduction to the field of material science and engineering and its vital role in nanotechnology advancement. Engaging mini-lab activities on ferrofluids, quantum dots and gold nanoparticles introduce students to specific fields within nanoscience and help them understand key concepts as the basis for thinking about engineering and everyday applications that use next-generation technology nanotechnology.
In this video adapted from NOVA scienceNOW, find out about the discovery …
In this video adapted from NOVA scienceNOW, find out about the discovery of a new building material, the carbon nanotube, whose physical properties could theoretically enable the creation of a 22,000-mile elevator to space.
Students learn about frequency and period, particularly natural frequency using springs. They …
Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.
This is the first lesson of this unit to introduce light. Lessons …
This is the first lesson of this unit to introduce light. Lessons 1-5 focus on sound, while 6-9 focus on light. In this lesson, students learn the five words that describe how light interacts with objects: "transparent," "translucent," "opaque," "reflection" and "refraction."
Produce light by bombarding atoms with electrons. See how the characteristic spectra …
Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.
In this video David solves an example problem to find the net …
In this video David solves an example problem to find the net electric field created by multiple charges at a point in between them. Created by David SantoPietro.
In this video David solves an example 2D electric field problem to …
In this video David solves an example 2D electric field problem to find the net electric field at a point above two charges. Created by David SantoPietro.
In this lesson, students will explore motion, rockets and rocket motion while …
In this lesson, students will explore motion, rockets and rocket motion while assisting Spacewoman Tess, Spaceman Rohan and Maya in their explorations. They will first learn some basic facts about vehicles, rockets and why we use them. Then, the students will discover that the motion of all objects including the flight of a rocket and movement of a canoe is governed by Newton's three laws of motion.
The purpose of this activity is to demonstrate Newton's third law of …
The purpose of this activity is to demonstrate Newton's third law of motion which states that every action has an equal and opposite reaction through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.
In this physics lab, students investigate the motion of different skateboarders pulled …
In this physics lab, students investigate the motion of different skateboarders pulled with various values of constant force. Using skateboarders of different masses and a variety of constant force values, students produce distance vs. time motion graphs for a number of skateboarding trials. Students may develop their own methods for setting up the lab and recording the necessary data. Following data collection, students analyze the data using Newton's second law and discuss differences between trials, the effects of friction, and possible sources of error in the experiment.
In this lesson designed to enhance literacy skills, an early astronaut's experiences …
In this lesson designed to enhance literacy skills, an early astronaut's experiences teach students that Newton's third law of motion—for every action, there is an equal and opposite reaction—applies both on Earth and in outer space.
In this video segment adapted from NOVA, NASA learns hard lessons from …
In this video segment adapted from NOVA, NASA learns hard lessons from the first American attempt to do work while "walking" in space. The video also explores Newton's third law of motion.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.