Updating search results...

Search Resources

12 Results

View
Selected filters:
  • Simulation
Ancestors, Archaeology and the Anishinabek: Bridging the Past into the Future
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Representatives from 10 sovereign Native American nations in Michigan, five State of Michigan agencies, two universities, and three private organizations collaborated to develop two short curriculum units, one for 3rd grade and one for 5th grade. Each grade level unit includes five lesson plans and support materials for teachers using information from two archaeological sites provided by MDOT and cultural, historical, environmental, and indigenous knowledge provided and vetted by Michigan Native American tribal partners participating in the project. The lesson plans use the Inquiry Arc of the College, Career, and Civic Life (C3) Framework and focus on specific Michigan Social Studies Standards. The lesson plans also provide links to Michigan English Language Arts (ELA) literacy standards, as well as science and math applications.

Subject:
Arts and Humanities
English Language Arts
Life Science
Mathematics
Social Science
Material Type:
Activity/Lab
Case Study
Diagram/Illustration
Lesson
Simulation
Unit of Study
Author:
Michigan Department of Transportation M-231 Outreach and Education Project Team
Date Added:
03/15/2022
Bug Hunt
Read the Fine Print
Educational Use
Rating
0.0 stars

“Bug Hunt” uses NetLogo software and simulates an insect population that is preyed on by birds. There are six speeds of bugs from slow to fast and the bird tries to catch as many insects as possible in a certain amount of time. Students are able to see the results graphed as the average insect speed over time, the current bug population and the number of insects caught. There are two variations to try for the predator, one where the predator pursues the prey and one where the predator stays still and captures insects that pass nearby. In the first case the “bird” catches the slow insects and the faster ones survive, reproduce and pass genes on. The average speed of bug should increase over time. In the second case the faster bugs come near to the bird more often than the slow ones. The slow ones survive more, reproduce and pass their genes on.

Subject:
Biology
Genetics
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Wilensky, Uri
Date Added:
06/17/2021
DNA to Protein
Read the Fine Print
Educational Use
Rating
0.0 stars

This online interactive module of 10 pages or frames integrates textual information, 3D molecular models, interactive molecular simulations, and embedded assessment items to guide students in understanding the copying of DNA base sequences from translation to transcription into proteins within each cell. The module divides the exercises in to Day 1 and Day 2 time frames. Teachers can view student assessment responses by assigning the module within a class created within the Molecular Workbench application. This Java-based module must be downloaded to each computer.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021
Earth in Motion: Seasons
Read the Fine Print
Educational Use
Rating
0.0 stars

This interactive activity from the Adler Planetarium explains the reasons for the seasons. Featured is a game in which Earth must be properly placed in its orbit in order to send Max, the host, to different parts of the world during particular seasons.

Subject:
Environmental Science
Education
Ecology
Astronomy
Chemistry
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Simulation
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
12/17/2005
Glaciers
Read the Fine Print
Educational Use
Rating
0.0 stars

Featuring images of glacier formations, this interactive resource adapted from the National Park Service explains what glaciers are, where they are found, how they form, and how they move.

Subject:
Environmental Science
Education
Ecology
Astronomy
Chemistry
Geology
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lecture Notes
Simulation
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
12/17/2005
Human Homeostasis
Read the Fine Print
Educational Use
Rating
0.0 stars

This interactive simulation of human homeostasis provides students the opportunity to explore how our body maintains a stable internal environment in spite of of the outside conditions, within certain limits. This simulation allows students to investigate a phenomenon that may in real life, be dangerous to humans. Students are asked to regulate the internal body temperature of an individual using clothing, exercise, and perspiration. A four- page exploration sheet guides students through the simulation, including a short prior knowledge piece providing information on how to use the simulation and introductory questions. Two separate activities are included: one that helps students understand the how each external factor affects initial body temperature and another that allows students to explore effects on body temperature after one hour. In the second portion of the interactive simulation students try to maintain a stable body temperature when the factors are changed. Students choose the factors of exercise level, sweat level, body position, clothing, and nutrients in terms of both water and food to maintain homeostasis. The simulation generates data tables and graphing during specific time intervals of outside temperature and body temperature. Students may also alter the outside temperature as part of the simulation. Students adjust the exercise level, amount of clothing, and sweating levels. Water level, sugar level, and fatigue level are influenced by the students’ choices and are illustrated by bar graphs and line graphs. This simulation can provide an introduction to a lesson or unit that explores how body systems interact. This simulation provides a good foundation for continued study of how the body systems interact and would be an excellent starting point for a lesson or unit on this concept. This interactive simulation provides students with a strong introduction to how body systems interact as the simulation illustrates how to maintain body temperature, sugar level and fatigue level and students are made aware of the consequences of not maintaining those levels. The importance of water and food are also emphasized. Students can rerun the simulation making different choices to determine the effects on homeostasis. Student exploration sheets provide guides for different runs with students setting their own parameters for the runs and drawing conclusions from the resulting changes. Teachers can view student assessment responses by assigning the simulation to a class created within the ExploreLearning site. Access to the teachers guide is provided with the free 30 day access and is helpful and complete. Vocabulary of dehydration, heat stroke, homeostasis, hypothermia, and involuntary, voluntary and thermoregulation are explained in detail in the accompanying teacher’s vocabulary guide.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021
Leaf Photosynthesis NetLogo Model
Read the Fine Print
Educational Use
Rating
0.0 stars

This Java-based NetLogo model allows students to investigate the chemical and energy inputs and outputs of photosynthesis through an interactive simulation. The simulation is a visual, conceptual model of photosynthesis and does not generate quantitative data. The central concept in the model is the role of chlorophyll in capturing light energy, and this concept is presented without delving into the biochemical details of the photosynthetic reactions. This allows students to focus on the core idea that photosynthesis transforms light energy into chemical energy. Along with exploring the basic process of photosynthesis, students can investigate the effects of light intensity, the day-night cycle (assuming the most common C3 photosynthetic pathway), CO2 concentration, and water availability on the rate of sugar production during photosynthesis. The model highlights the cycling within the chloroplasts between excited and unexcited states as energy is captured and released by chlorophyll. The lesson is written as an introductory learning experience, beginning with the question: What is needed for photosynthesis in a leaf, and what is produced? This resource is best suited as one in a series of learning experiences that either reinforce or extend the concepts addressed here. The model is embedded within an electronic form that provides instructions and guiding questions. Teachers and students should note that the electronic form does not save user data. An important limitation is that the model relies heavily on students’ visual perception, and this may pose a barrier for some students.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021
Molecule Polarity
Unrestricted Use
CC BY
Rating
0.0 stars

Students will predict bond polarity using electron negativity values; indicate polarity with a polar arrow or partial charges; rank bonds in order of polarity; and predict molecular polarity using bond polarity and molecular shape.

Subject:
Chemistry
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Robert Parson
Date Added:
09/27/2011
Mystery Skull Interactive | The Smithsonian Institution's Human Origins Program
Read the Fine Print
Educational Use
Rating
0.0 stars

When scientists discover a new fossil skull, they compare it to skulls that have already been identified as particular early human species. In this activity, you get the chance to be the scientist!

Subject:
Arts and Humanities
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Simulation
Provider:
Smithsonian Institution
Provider Set:
Smithsonian National Museum of Natural History
Date Added:
06/17/2021
Population Explosion
Read the Fine Print
Educational Use
Rating
0.0 stars

Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a “reaper” button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.

Subject:
Biology
Ecology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021
Star in a Box: Advanced
Unrestricted Use
CC BY
Rating
0.0 stars

Have you ever wondered what happens to the different stars in the night sky as they get older? The Star in a Box application lets you explore the life cycle of stars. It animates stars with different starting masses as they change during their lives. Some stars live fast-paced, dramatic lives; others change very little for billions of years. The app visualises the changes in mass, size, brightness and temperature for all these different stages.

Subject:
Astronomy
Material Type:
Activity/Lab
Game
Interactive
Simulation
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Edward Gomez, LCOGT
Date Added:
06/17/2021
What is the Future of Earth’s Climate?
Read the Fine Print
Educational Use
Rating
0.0 stars

This computer-based learning module engages students in questions that scientists around the world are exploring about Earth’s climate. They gain an appreciation for how much is not known about the Earth and climate change. The module contains 5 activities; 1) Earth’s Changing Climates, 2) Interactions Within the Atmosphere, 3) Sources, Sinks, and Feedbacks, 4) Feedbacks of Ice and Clouds, and 5) Using Models to Make Predictions. Each activity provides information in simulations, text, video, or graphic format and the students enter answers to both open-ended and closed questions within the program. Once the students have completed an activity, they can print a report showing all the questions and their answers. The authors estimate the entire module should take 225 minutes.

Subject:
Atmospheric Science
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021