The "Cultivating Our Culture, Conserving Our Land" challenge is an initiative tailored …
The "Cultivating Our Culture, Conserving Our Land" challenge is an initiative tailored for classrooms throughout the Virgin Islands, encouraging them to engage in environmental stewardship activities interwoven with the cultural heritage and history of the territory. This challenge aims to inspire classrooms to develop and execute projects addressing local environmental issues while highlighting the cultural and historical significance of the Virgin Islands. It also fosters a deeper understanding among students of their role as stewards of both their natural and cultural heritage. By encouraging collaboration, creativity, and critical thinking in solving environmental challenges with a cultural perspective, the challenge provides a unique platform for holistic learning and community engagement.Challenge submissions due on April 19th, 2024Submittal form here
In this lesson, students expand their understanding of solid waste management to …
In this lesson, students expand their understanding of solid waste management to include the idea of 3RC (reduce, reuse, recycle and compost). They will look at the effects of packaging decisions (reducing) and learn about engineering advancements in packaging materials and solid waste management. Also, they will observe biodegradation in a model landfill (composting).
The goals of OpenSciEd are to ensure any science teacher, anywhere, can …
The goals of OpenSciEd are to ensure any science teacher, anywhere, can access and download freely available, high quality, locally adaptable full-course materials. REMOTE LEARNING GUIDE FOR THIS UNIT NOW AVAILABLE!
This unit on weather, climate, and water cycling is broken into four separate lesson sets. In the first two lesson sets, students explain small-scale storms. In the third and fourth lesson sets, students explain mesoscale weather systems and climate-level patterns of precipitation. Each of these two parts of the unit is grounded in a different anchoring phenomenon.
In this part of the unit, students are exploring how global temperatures …
In this part of the unit, students are exploring how global temperatures have changed over the past hundred years. Students will examine tables and graphs about global temperatures and carbon dioxide levels, human consumption of food, and human consumption of natural resources. They will find patterns in the graphs. Based on this data, students will construct an argument about how human activities (increase in population and consumption of natural resources) cause global temperatures to increase.
At this point in the unit, students have learned about Pascal's law, …
At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.
Students are provided with an introduction to above-ground storage tanks, specifically how …
Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.
Students conduct a simple experiment to model and explore the harmful effects …
Students conduct a simple experiment to model and explore the harmful effects of acid rain (vinegar) on living (green leaf and eggshell) and non-living (paper clip) objects.
Students are introduced to the differences between acids and bases and how …
Students are introduced to the differences between acids and bases and how to use indicators, such as pH paper and red cabbage juice, to distinguish between them.
By watching and performing several simple experiments, students develop an understanding of …
By watching and performing several simple experiments, students develop an understanding of the properties of air: it has mass, it takes up space, it can move, it exerts pressure, it can do work.
These images from the Smithsonian Institution depict Nancy Knowlton's work with snapping …
These images from the Smithsonian Institution depict Nancy Knowlton's work with snapping shrimp in Panama. Knowlton found that the closing of the isthmus -- dividing the Pacific Ocean from the Caribbean -- resulted in new species of shrimp.
Learn about the structure and function of living organisms by drawing an …
Learn about the structure and function of living organisms by drawing an imaginary animal in the Take the Stage game show, ANIMAL SURVIVAL! Viewers become contestants on a game show and are challenged to draw an imaginary animal that could live and survive in either the desert, ocean, or the arctic tundra. When drawing the imaginary animal, the contestants write out two distinct structures and a function for each of the structures that help it survive. Learning Objective: Compare the structures and functions of different species that help them live and survive in a specific environment.
Students are introduced to the classification of animals and animal interactions. Students …
Students are introduced to the classification of animals and animal interactions. Students also learn why engineers need to know about animals and how they use that knowledge to design technologies that help other animals and/or humans. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.
The purpose of this Roadmap is work on the Science and Engineering …
The purpose of this Roadmap is work on the Science and Engineering Practices—specifically engaging in argument from evidence and obtaining, evaluating, and communicating information. During this roadmap students will synthesize information from several articles about plastics and the environment and the role regulation plays in our communities. At the end of their research students are expected to write an opinion essay answering the question: Should we ban plastics?. This opinion piece is also an opportunity for students to practice writing in Claim-Evidence-Reasoning. As an extension, students can then engage in a debate but this is optional based on time constraints and how ‘in depth’ you want this to be for your students.
Overall expect this to take several days 2 for research and synthesis, 1 to write their papers, and then additional time for debate.
Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. …
Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. Students explore the dynamic and competing upper atmospheric roles of the protective ozone layer, the sun's UV radiation and harmful human-made CFCs (chlorofluorocarbons).
Students explore the biosphere's environments and ecosystems, learning along the way about …
Students explore the biosphere's environments and ecosystems, learning along the way about the plants, animals, resources and natural cycles of our planet. Over the course of lessons 2-6, students use their growing understanding of various environments and the engineering design process to design and create their own model biodome ecosystems - exploring energy and nutrient flows, basic needs of plants and animals, and decomposers. Students learn about food chains and food webs. They are introduced to the roles of the water, carbon and nitrogen cycles. They test the effects of photosynthesis and transpiration. Students are introduced to animal classifications and interactions, including carnivore, herbivore, omnivore, predator and prey. They learn about biomimicry and how engineers often imitate nature in the design of new products. As everyday applications are interwoven into the lessons, students consider why a solid understanding of one's environment and the interdependence within ecosystems can inform the choices we make and the way we engineer our communities.
In this multi-day activity, students explore environments, ecosystems, energy flow and organism …
In this multi-day activity, students explore environments, ecosystems, energy flow and organism interactions by creating a scale model biodome, following the steps of the engineering design process. The Procedure section provides activity instructions for Biodomes unit, lessons 2-6, as students work through Parts 1-6 to develop their model biodome. Subjects include energy flow and food chains, basic needs of plants and animals, and the importance of decomposers. Students consider why a solid understanding of one's environment and the interdependence of an ecosystem can inform the choices we make and the way we engineer our own communities. This activity can be conducted as either a very structured or open-ended design.
Student teams creatively construct mobiles using hangers and assorted materials and objects …
Student teams creatively construct mobiles using hangers and assorted materials and objects while exploring the principles of balance and center of mass. They build complex, free-hanging structures by balancing pieces with different lengths, weights, shapes and sizes.
To increase students' awareness of possible invisible pollutants in drinking water sources, …
To increase students' awareness of possible invisible pollutants in drinking water sources, students perform an exciting lab requiring them to think about how solutions and mixtures exist even in unsuspecting places such as ink. They use alcohol and chromatography paper to separate the components of black and colored marker ink. Students witness first-hand how components of a solution can be separated, even when those individual components are not visible in solution.
Students observe and discuss a simple balloon model of an electrostatic precipitator …
Students observe and discuss a simple balloon model of an electrostatic precipitator to better understand how this pollutant recovery method functions in cleaning industrial air pollution.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.