Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
Students use simple materials to design an open spectrograph so they can …
Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.
Students design a temporary habitat for a future classroom pet—a hingeback tortoise. …
Students design a temporary habitat for a future classroom pet—a hingeback tortoise. Based on their background research, students identify what type of environment this tortoise needs and how to recreate that environment in the classroom. The students divide into groups and investigate the features of a habitat for a hingeback tortoise. These features include how many holes a temporary habitat may need, the animal’s ideal type of bedding, and how much water is needed to create the necessary humidity level within the tortoise’s environment. Each group communicates and presents this information to the rest of the class after they research, brainstorm, collect and analyze data, and design their final plan.
Students build small-sized prototypes of mountain rescue litters rescue baskets for use …
Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.
Students follow the steps of the engineering design process (EDP) while learning …
Students follow the steps of the engineering design process (EDP) while learning about assistive devices and biomedical engineering. They first go through a design-build-test activity to learn the steps of the cyclical engineering design process. Then, during the three main activities (7 x 55 minutes each) student teams are given a fictional client statement and follow the EDP steps to design products an off-road wheelchair, a portable wheelchair ramp, and an automatic floor sweeper computer program. Students brainstorm ideas, identify suitable materials and demonstrate different methods of representing solutions to their design problems scale drawings or programming descriptions, and simple models or classroom prototypes.
This unit covers the broad spectrum of topics that make-up our very …
This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.
Students learn about the periodic table and how pervasive the elements are …
Students learn about the periodic table and how pervasive the elements are in our daily lives. After reviewing the table organization and facts about the first 20 elements, they play an element identification game. They also learn that engineers incorporate these elements into the design of new products and processes. Acting as computer and animation engineers, students creatively express their new knowledge by creating a superhero character based on of the elements they now know so well. They will then pair with another superhero and create a dynamic duo out of the two elements, which will represent a molecule.
The purpose of this activity is to demonstrate the importance of rocks, …
The purpose of this activity is to demonstrate the importance of rocks, soils and minerals in engineering and how using the right material for the right job is important. The students build three different sand castles and test them for strength and resistance to weathering. Then, they discuss how the buildings are different and what engineers need to think about when using rocks, soils and minerals for construction.
Students learn about the process of reverse engineering and how this technique …
Students learn about the process of reverse engineering and how this technique is used to improve upon technology. Students analyze push-toys and draw diagrams of the predicted mechanisms inside the toys. Then, they disassemble the toys and draw the actual inner mechanisms. By understanding how the push-toys function, students make suggestions for improvement, such as cost effectiveness, improved functionality, ecological friendliness and any additional functionality they determine is an improvement.
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, …
Imagining themselves arriving at the Olympic gold medal soccer game in Beijing, students begin to think about how engineering is involved in sports. After a discussion of kinetic and potential energy, an associated hands-on activity gives students an opportunity to explore energy absorbing materials as they try to protect an egg from being crushed.
Students are introduced to the engineering design process within the context of …
Students are introduced to the engineering design process within the context of reading Dr. Seuss’s book, Bartholomew and the Oobleck. To do so, students study a sample of aloe vera gel (representing the oobleck) in lab groups. After analyzing the substance, they use the engineering design process to develop and test other substances in order to make it easier for rain to wash away the oobleck. Students must work within a set of constraints outlined within the Seuss book and throughout the activity and use only substances available within the context of the plot. Students also take into consideration the financial and environmental costs associated with each substance.
Students learn how healthy human heart valves function and the different diseases …
Students learn how healthy human heart valves function and the different diseases that can affect heart valves. They also learn about devices and procedures that biomedical engineers have designed to help people with damaged or diseased heart valves. Students learn about the pros and cons of different materials and how doctors choose which engineered artificial heart valves are appropriate for certain people.
Students use a recipe to prepare a hydrogel gummy snack, which has …
Students use a recipe to prepare a hydrogel gummy snack, which has a similar consistency to that found in a Haribo® gummy product. They must convert the juice and gelatin-based recipe from US customary units to metric units with dimensional analysis conversion. After unit conversion, teams are given different gelatin quantities and design their gummy snacks. Once the candies have solidified, student groups compare the gummy snacks are for viscosity and taste. After a taste test, teams reflect on their experiment and brainstorm ways to iterate a better gummy recipe.
In this service-learning engineering project, students follow the steps of the engineering …
In this service-learning engineering project, students follow the steps of the engineering design process to design an assistive eating device for a client. More specifically, they design a prototype device to help a young girl who has a medical condition that restricts the motion of her joints. Her wish is to eat her favorite food, pizza, without getting her nose wet. Students learn about arthrogryposis and how it affects the human body as they act as engineers to find a solution to this open-ended design challenge and build a working prototype. This project works even better if you arrange for a client in your own community.
Students begin by reading Dr. Seuss' "The Lorax" as an example of …
Students begin by reading Dr. Seuss' "The Lorax" as an example of how overdevelopment can cause long-lasting environmental destruction. Students discuss how to balance the needs of the environment with the needs of human industry. Student teams are asked to serve as natural resource engineers, city planning engineers and civil engineers with the task to replant the nearly destroyed forest and develop a sustainable community design that can co-exist with the re-established natural area.
Students learn about the wonderful and fascinating country of China, and its …
Students learn about the wonderful and fascinating country of China, and its environmental challenges that require engineering solutions, many in the form of increased energy efficiency, the incorporation of renewable energy, and new engineering developments for urban and rural areas. China is fast becoming an extremely influential factor in our world today, and will likely have a large role in shaping the decades ahead. China is the world's largest energy consumer and the largest producer of carbon dioxide emissions, leading engineers and scientists to be concerned about the role these emissions play in rural and urban public and environmental health, as well as in global climate change. Through exploring some sources of air pollution, appropriate housing for different climate zones, and the types of renewable energy, the lessons and activities of this unit present ways that engineers are helping people in China, using an approach to cleaner, smarter, healthier and more-efficient ways of living that apply to people wherever they live.
In this unit, students explore the various roles of environmental engineers, including: …
In this unit, students explore the various roles of environmental engineers, including: environmental cleanup, water quality, groundwater resources, surface water and groundwater flow, water contamination, waste disposal and air pollution. Specifically, students learn about the factors that affect water quality and the conditions that enable different animals and plants to survive in their environments. Next, students learn about groundwater and how environmental engineers study groundwater to predict the distribution of surface pollution. Students also learn how water flows through the ground, what an aquifer is and what soil properties are used to predict groundwater flow. Additionally, students discover that the water they drink everyday comes from many different sources, including surface water and groundwater. They investigate possible scenarios of drinking water contamination and how contaminants can negatively affect the organisms that come in contact with them. Students learn about the three most common methods of waste disposal and how environmental engineers continue to develop technologies to dispose of trash. Lastly, students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. Also, they investigate the technologies developed by engineers to reduce air pollution.
Students are introduced to the fundamentals of environmental engineering as well as …
Students are introduced to the fundamentals of environmental engineering as well as the global air, land and water quality concerns facing today's environmental engineers. After a lesson and activity to introduce environmental engineering, students learn more about water chemistry aspects of environmental engineering. Specifically, they focus on groundwater contamination and remediation, including sources of contamination, adverse health effects of contaminated drinking water, and current and new remediation techniques. Several lab activities provide hands-on experiences with topics relevant to environmental engineering concerns and technologies, including removal efficiencies of activated carbon in water filtration, measuring pH, chromatography as a physical separation method, density and miscibility.
Students develop critical thinking skills by interviewing a person who has perspective …
Students develop critical thinking skills by interviewing a person who has perspective on environmental history. Students explore the concept of a timeline, including historical milestones, and develop a sense of the context of events.
In this activity, students create a "web" to identify and demonstrate the …
In this activity, students create a "web" to identify and demonstrate the interactions among the living and non-living parts of an environment. This information allows students to better understand what an environment is and to also consider how engineers use teamwork to solve problems.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.