Students will explain the concept of diversity and calculate various ways to …
Students will explain the concept of diversity and calculate various ways to measure diversities. Students will analyze data and factors limiting a population, and evaluate human impact on biodiversity. (Note: this unit was designed for an IB Environmental Sciences course.)
Population Explosion is a computer simulation which allows students to manipulate factors …
Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a reaper button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.
Using Avida-ED freeware, students control a few factors in an environment populated …
Using Avida-ED freeware, students control a few factors in an environment populated with digital organisms, and then compare how changing these factors affects population growth. They experiment by altering the environment size (similar to what is called carrying capacity, the maximum population size that an environment can normally sustain), the initial organism gestation rate, and the availability of resources. How systems function often depends on many different factors. By altering these factors one at a time, and observing the results, students are able to clearly see the effect of each one.
This lesson is the second of two that explore cellular respiration and …
This lesson is the second of two that explore cellular respiration and population growth in yeasts. In the first lesson, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arose during the first lesson and its associated activity, in this lesson students work in small groups to design experiments that will determine how environmental factors affect yeast population growth.
What effect do interactions between species have on the sizes of the …
What effect do interactions between species have on the sizes of the populations involved? Learn about the dynamics of predator and prey populations, and how they can influence one another’s patterns of growth and decline.
This activity is designed to give students an understanding of one aspect …
This activity is designed to give students an understanding of one aspect of what an engineer does and the ability to experience various steps in the engineering design process as it relates to a 3D printing task. Students transform into engineers as they work in teams to carry out a 3D printing task by using a blunt-tip needle syringe to print a line using a variety of colored liquid materials (shampoo, conditioner, aloe, and hand sanitizer) into a small plastic box filled with a gel base. Approximating the work of engineers, the teams observe the interactions between the printed material and the gel base at intervals of 10 minutes and iterate, or change, the ink base as necessary to achieve a goal. Using the dye to color the ink allows students to determine which material will permeate or diffuse throughout the base more effectively. Teams share their results to compare with their classmates. A real-world application for this investigation would be when engineers conduct research to develop new medicines, the goal is for the medicine to make its way through the body in the most effective way so that the body can heal.
This wiki page documents the Projection Investigation Activity done during San Francisco …
This wiki page documents the Projection Investigation Activity done during San Francisco Unified School District's SLANT workshop on January 29, 2011. Projection information, Julia Marshall's 5 Ways to Integrate, and links are provided, as well as the introductory Improv Activity "Advertising Team" which stretches the imagination to design something for the future. The Projection Investigation Activity begins with research around a scientific theme, then brainstorming and prototyping design ideas around that theme, and finally writing a narrative to present the prototype.
Watch how NJ high school students apply basic principles of molecular biology …
Watch how NJ high school students apply basic principles of molecular biology to solve real research problems, and publish their own genome research at GenBank, the international genomic sequence database.
Students create and decode DNA for mans best friend to observe how …
Students create and decode DNA for mans best friend to observe how variations in DNA lead to the inheritance of different traits. Strips of paper that represent DNA are randomly selected and used to assemble the dog's DNA. Students read the DNA and create a drawing of their pet, and compare it with others in the class to check for similarities and differences.
Are you related to a lizard? This Adaptations Activity gives students insights …
Are you related to a lizard? This Adaptations Activity gives students insights into how very different organisms are actually related (distantly). Students search for two somewhat closely related organisms (like two kinds of insects, or a spider and an insect) to compare, using Venn diagrams. Then they debate which two organisms studied by a team are most closely related, supporting their ideas with evidence and reasoning. Finally, they interpret a “Tree of Life” diagram to see how living things on Earth share common ancestors. This activity helps students develop a foundation for understanding key ideas about evolution.
In this activity, the learner explores various ways in which organisms reproduce. …
In this activity, the learner explores various ways in which organisms reproduce. The learner discusses the role that reproduction plays in the cycle of life. By watching short videos and participating in follow-up discussion: 1. They observe that no individual organism lives forever and in order to continue species, organisms must pass their genetic instructions on to the next generation. 2. They learn that organisms reproduce asexually, by dividing and producing two identical copies of themselves. 3. They learn that many plants reproduce sexually, often using complex strategies that have evolved over millions of years. 4. They explore the pros and cons of asexual and sexual reproduction and the reasons both strategies persist.
This video aims to provide an illustrative lesson about the respiratory system …
This video aims to provide an illustrative lesson about the respiratory system in birds and how the adaptations of that system over time have made it different than that of other living creatures, especially mammals. Birds are omnipresent in our lives, and students will come to understand and appreciate the fascinating inner workings of these beautiful creatures. This lesson discusses avian features and differences for 20 to 25 minutes, with approximately 20 minutes of in-class student activities.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.