Updating search results...

Search Resources

1087 Results

View
Selected filters:
  • Physics
Microwaves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
07/01/2004
Mirror equation example problems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David solves a few exmaple problems involving concave and convex mirrors using the mirror equation and magnification equation.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
David SantoPietro
Date Added:
06/25/2018
Mission to Mars
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Using the mission to land a human on the Martian surface as context, students will use knowledge about energy and molecular motion to build and test a simplified heat shield.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
South Metro-Salem STEM Partnership
Author:
Anna Digby & Joanna Warkentin
Date Added:
06/17/2021
Mix It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson plan introduces the properties of mixtures and solutions. A class demonstration gives the students the opportunity to compare and contrast the physical characteristics of a few simple mixtures and solutions. Students discuss the separation of mixtures and solutions back into their original components as well as different engineering applications of mixtures and solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Model Building Activity of Electrostatics
Read the Fine Print
Educational Use
Rating
0.0 stars

An interactive simulation in which students use a model of charged objects to explain how charges interact and construct an understanding of Coulomb's Law. It is concerned with comparing ions and neutral atoms. The model allows the user to investigate the relationships between sign of charge, magnitude of charge, and distance between ions. The model illustrates the operation of three types of electroscopes. Next it visually explores how a static charge can bend the path of a moving electron, and then graphically and numerically explores Coulomb's Law. Lastly a model that illustrates polarization of charge illustrates why a charged balloon is attracted to a neutral wall. The system allows students to enter their multiple choice and written answers throughout the activity and generate a report of their responses at the end even if they are not logged into the system.

Subject:
Physical Science
Physics
Material Type:
Interactive
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
06/17/2021
Modeling and Simulation for High School Teachers: Principles, Problems, and Lesson Plans
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A collaboration between the National Aeronautics and Space Administration (NASA) and the CK-12 Foundation, this book provides high school mathematics and physics teachers with an introduction to the main principles of modeling and simulation used in science and engineering. An appendix of lesson plans is included.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Teaching/Learning Strategy
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Date Added:
07/13/2021
Models of the Hydrogen Atom
Unrestricted Use
CC BY
Rating
0.0 stars

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Mindy Gratny
Sam McKagan
Wendy Adams
Date Added:
01/01/2007
Molecular Shapes
Read the Fine Print
Educational Use
Rating
0.0 stars

In this interactive activity from ChemThink, learn about covalent molecules and how the VSEPR theory predicts the shapes of covalently-bonded molecules.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
08/09/2007
Molecules and Light
Unrestricted Use
CC BY
Rating
0.0 stars

Do you ever wonder how a greenhouse gas affects the climate, or why the ozone layer is important? Use the sim to explore how light interacts with molecules in our atmosphere.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Kelly Lancaster
Robert Parson
Trish Loeblein
Date Added:
10/01/2010
Momentum Thinking Problems
Read the Fine Print
Educational Use
Rating
0.0 stars

This reference is a series of assessment items that require that the students think through momentum conceptually, analyze graphs related to impulse and momentum, and work through calculations using momentum and impulse. There are energy and momentum problems mixed together in this set. Due to the large number of assessment items, the instructor will want to select a portion of the questions rather than use the entire set as a single assessment. The webpage is formatted in a straight forward text so it is easy to copy and paste the items for use in classroom tests and quizzes.

Subject:
Physical Science
Physics
Material Type:
Assessment
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Joe Redish
Date Added:
06/17/2021
Monitoring Noise Levels with a Smart Device
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the physical properties of sound, how it travels and how noise impacts human health—including the quality of student learning. They learn different techniques that engineers use in industry to monitor noise level exposure and then put their knowledge to work by using a smart phone noise meter app to measure the noise level at an area of interest, such as busy roadways near the school. They devise an experimental procedure to measure sound levels in their classroom, at the source of loud noise (such as a busy road or construction site), and in between. Teams collect data using smart phones/tablets, microphones and noise apps. They calculate wave properties, including frequency, wavelength and amplitude. A PowerPoint® presentation, three worksheets and a quiz are provided.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jana B. Milford
Kent Kurashima
Date Added:
11/03/2017
More on Newton's second law
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

David explains how to use Newton's second law when dealing with multiple forces, forces in two dimensions, and diagonal forces. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
07/15/2021
More on Newton's third law
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

David explains some of the common misconceptions in dealing with Newton's Third Law. He also shows how to correctly and reliably identify Third Law force pairs. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
07/29/2016
More on single slit interference
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

See how there's actually constructive (rather than just destructive) interference at some points on the screen. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
David SantoPietro
Date Added:
07/07/2014
Motion Commotion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn why and how motion occurs and what governs changes in motion, as described by Newton's three laws of motion. They gain hands-on experience with the concepts of forces, changes in motion, and action and reaction. In an associated literacy activity, students design a behavioral survey and learn basic protocol for primary research, survey design and report writing.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
06/17/2021
Motion in 2D
Unrestricted Use
CC BY
Rating
0.0 stars

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Subject:
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Sam Reid
Date Added:
11/15/2007
Motion in 2D (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Sam Reid
Date Added:
07/02/2009