Updating search results...

Search Resources

1087 Results

View
Selected filters:
  • Physics
The Power of Mechanical Advantage
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the mechanical advantage offered by pulleys in an interactive and game-like manner. By virtue of the activity's mechatronic presentation, they learn to study a mechanical system not as a static image, but rather as a dynamic system that is under their control. Using a LEGO® MINDSTORMS® robotics platform and common hardware items, students build a mechanized elevator system. The ability to control different parameters (such as motor power, testing load and pulley arrangement) enables the teacher, as well as the students, to emphasize and reinforce particular aspects/effects of mechanical advantage.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Janet Yowell
Date Added:
09/18/2014
Preconditioning Balloons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use balloons (a polymer) to explore preconditioning a viscoelastic material behavior that is important to understand when designing biomedical devices. They improve their understanding of preconditioning by measuring the force needed to stretch a balloon to the same displacement multiple times. Students gain experience in data collection and graph interpretation.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa Forbes
Date Added:
09/18/2014
Pressure and Pascal's principle (part 1)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal explains the difference between liquids and gasses (both fluids). He then starts a calculation of the work done on a liquid in a U-shaped container. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
07/15/2021
Pressure and Pascal's principle (part 2)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal finishes the calculation of work to determine the mechanical advantage in a U-shaped tube. He also explains pressure and Pascal's Principle. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
07/15/2021
Preventing Potholes
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as civil engineers hired by the U.S. Department of Transportation to research how to best use piezoelectric materials to detect road damage, student groups are challenged to independently create their own experiment procedures, working with given materials and tools. The general approach is that they set up model roads using rubber mats to simulate asphalt and piezoelectric transducers to simulate the in-ground road sensors. They drop heavy bolts at various locations on the “road,” collecting data and then analyzing the voltage changes across the piezoelectric transducers caused by the vibrations of the bolt hitting the rubber. After making notches in the rubber “road” to simulate cracks and potholes, they collect more data to see if the piezo elements detect the damage. Students write up their research and conclusions as if presenting evidence to USDOT officials about how the voltage changes across the piezo elements can be used to indicate road damage and extrapolated to determine when roads need maintenance service.

Subject:
Career and Technical Education
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Adam Alster
Amir Alvai
Andrea Varricchione
Drew Kim
Nizar Lajnef
Victoria Davis-King
Date Added:
06/17/2021
Programming a Robot
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from Cyberchase, the CyberSquad breaks down an action into a series of steps in order to program a robot to do what they need it to do.

Subject:
Applied Science
Computer Science
Engineering
Geometry
Mathematics
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
The William and Flora Hewlett Foundation
WNET
Date Added:
08/29/2008
Projectile Magic
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips from October Sky and Harry Potter and the Sorcerer's Stone to learn about projectile motion. They explore the relationships between displacement, velocity and acceleration and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Projectile Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of projectile motion, of which they are often familiar from life experiences,such as playing sports such as basketball or baseball, even though they may not understand the physics involved. Students use tabletop-sized robots to build projectile throwers and measure motion using sensors. They compute distances and velocities using simple kinematic equations and confirm their results through measurements by hand. To apply the concept, students calculate the necessary speed of an object to reach a certain distance in a hypothetical scenaro: A group of hikers stranded at the bottom of a cliff need food, but rescuers cannot deliver it themselves, so they must devise a way to get the food to the hikers.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Zachary Nishino
Date Added:
09/18/2014
Projectile Motion
Unrestricted Use
CC BY
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
04/07/2006
Projectile Motion (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
06/02/2008
Projection Investigation Activity
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This wiki page documents the Projection Investigation Activity done during San Francisco Unified School District's SLANT workshop on January 29, 2011. Projection information, Julia Marshall's 5 Ways to Integrate, and links are provided, as well as the introductory Improv Activity "Advertising Team" which stretches the imagination to design something for the future. The Projection Investigation Activity begins with research around a scientific theme, then brainstorming and prototyping design ideas around that theme, and finally writing a narrative to present the prototype.

Subject:
Applied Science
Art History
Arts and Humanities
Biology
Engineering
Environmental Science
Geology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Reading
Teaching/Learning Strategy
Provider:
ISKME
Author:
Megan Simmons
Date Added:
03/15/2022
Protecting the Mummified Troll
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the (hypothetical) task of developing an invisible (non-intrusive) security system to protect the school's treasured mummified troll! Solving the challenge depends on an understanding of the properties of light. After being introduced to the challenge question, students generate ideas and consider the knowledge required find solutions. They watch a portion of the "Mythbuster's Crimes and Myth-Demeanors" episode ($20), which helps direct their research and learning toward solving the challenge. They begin to study laser applications in security systems, coming to realize the role of lasers in today's society.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014